

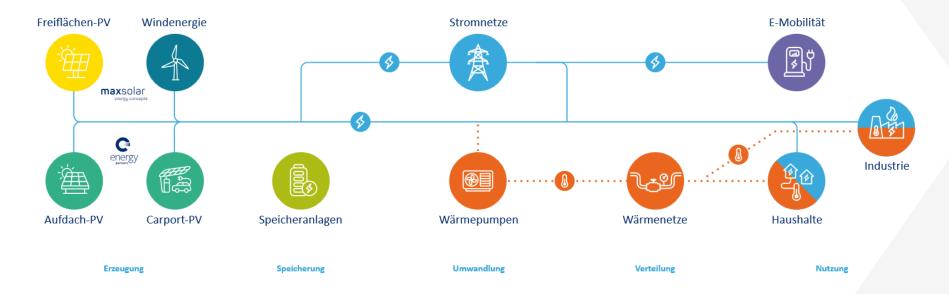
Kommunale Wärmeplanung Markt Kaufering / MaxSolar

Gefördert durch:

Bundesministerium für Umwelt, Klimaschutz, Naturschutz und nukleare Sicherheit

aufgrund eines Beschlusses des Deutschen Bundestages

Über MaxSolar



Ganzheitlicher Lösungsanbieter

Alles aus einer Hand:

Als **ganzheitlicher Lösungsanbieter** decken wir alle Bereiche der Sektorenkopplung ab – von der Stromerzeugung und -speicherung über die Lieferung von Ökostrom bis hin zum nachhaltigen Nutzungskonzept.

Wir übernehmen dabei die gesamte Prozesskette: Beratung, Projektierung, Planung, Installation, Betrieb und Investment.

Das bietet MaxSolar

Ganzheitliche Energiekonzepte – Von der Erzeugung über die Speicherung, Umwandlung bis hin zur Nutzung

Was ist die Kommunale Wärmeplanung?

- > Strategisches Instrument, das der Planungsverantwortliche Stelle (PVS) ermöglicht, das Thema Wärme im Rahmen der nachhaltigen Entwicklung zu gestalten
- > **Ziel** der **Wärmeplanung** ist es, den optimalen und **kosteneffizientesten Weg** zu einer **umweltfreundlichen** und **fortschrittlichen Wärmeversorgung** vor Ort zu finden
- > Die **kommunale Wärmeplanung** basiert auf den Gesetzen für die Wärmeplanung und zur Dekarbonisierung der Wärmenetze (Wärmeplanungsgesetz **WPG 01.01.2024**)
- Die Wärmeplanung bietet der PVS eine strategische Handlungsgrundlage und einen Fahrplan, der in den kommenden Jahren Orientierung und einen Handlungsrahmen gibt – er ersetzt jedoch niemals eine detaillierte Planung vor Ort
- > Der Plan enthält keine verbindliche Aussage für einzelne Haushalte in Bezug auf eine kurzfristige Heizungsumstellung niemand muss besorgt sein, dass mit Fertigstellung des Plans zwingende Umbauarbeiten und Kosten auf ihn oder sie zukommen könnten

Vorgegebene Bausteine nach WPG

- § 7 Beteiligung der Öffentlichkeit, von Trägern öffentlicher Belange, der Netzbetreiber sowie weiterer natürlicher und juristischer Personen
- > § 14 Eignungsprüfung und verkürzte Wärmeplanung
- > § 15 Bestandsanalyse
- § 16 Potenzialanalyse
- § 17 Zielszenario
- > § 18 Einteilung des beplanten Gebietes in voraussichtliche Wärmeversorgungsgebiete
- > § 19 Darstellung der Versorgungsoptionen für das Zieljahr
- > § 20 Umsetzungsstrategie & Maßnahmen Kommunaler Wärmeplan: Zusammenfassung der wesentlichen Ergebnisse

Bestandsanalyse

- > Grundlegender Bestandteil der Kommunalen Wärmeplanung ist eine umfassende und ganzheitliche Bestandsaufnahme des Gemeindegebietes
- > Ziel: Identifikation bestehender Strukturen, Stärken und Schwächen; Erfassung der Bebauungsstruktur und der aktuellen energetischen Situation
- > Fokus auf Energiebedarfen, realen Verbräuchen, Versorgungsformen sowie dem Einsatz erneuerbarer Energien
- Datengrundlage: Informationen der Gemeinde, der Strom-, Gas- und Nahwärmenetzbetreiber sowie LOD2- und Zensus-2022-Daten
- > Ergänzend können weitere Daten aus öffentlichen Quellen oder von externen Akteuren zur Erhöhung der Datenqualität herangezogen werden

LOD2 - Daten

Datenbestand des 3D-Gebäudemodells mit dem "Level of Detail 2" (LoD2-DE) werden alle **oberirdischen Gebäude** und **Bauwerke** einschließlich **standardisierter Dachformen** entsprechend der **tatsächlichen Firstverläufe** repräsentiert.

Zensus 22 - Daten

Mai 2022 Stichtag Zensus 2022

Im Zensus 2022 wurden erstmals die **Nettokaltmiete**, **Gründe** und **Dauer** von Wohnungs**leer**stand sowie der **Energieträger der Heizung** erfasst.

Inhalte Bestandsanalyse

DARSTELLUNG DER ERGEBNISSE DER BESTANDSANALYSE NACH § 15 & ANLAGE 2 (ZU § 23) WPG

- > Überwiegendes Gebäudealter auf Baublockebene
- > Anzahl der Heizungsanlagen im Betrachtungsgebiet
- > Dominierender Gebäudetyp auf Baublockebene
- > Wärmeverbrauchsdichten [MWh/ha/a] auf Baublockebene
- > Wärmeliniendichten [kWh/m/a] in straßenabschnittsbezogener Darstellung
- > Übersicht zu bestehendem Nahwärmenetz
- > Übersicht zu bestehendem Erdgasnetz
- > Übersicht zu bestehen Abwassernetz
- > Energie- und Treibhausgasbilanz im Wärmesektor

Clusterbildung in der Wärmeplanung

1) Gebäudescharfe Analyse

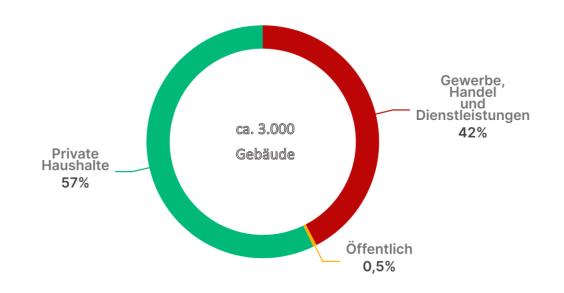
> Auswertung und Berechnung einzelner Gebäude erfolgt gebäudescharf anhand vorliegender Infrastrukturdaten

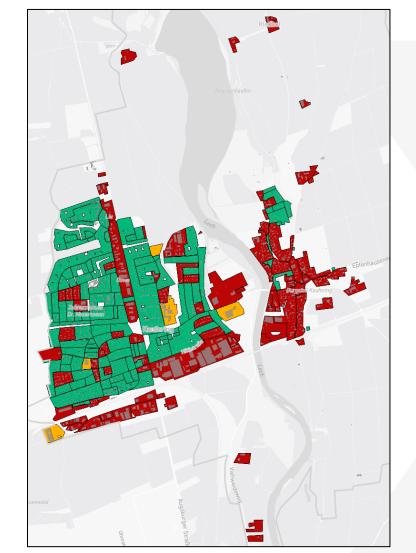
2) Datenschutzkonformität

- > Ergebnisse müssen jedoch aggregiert veröffentlicht werden
- > Eine Mindestanzahl von Gebäuden wird geclustert

3) 51 % - Kriterium

Die Mehrheit der Gebäude bestimmt die Clusterzuordnung. Sind z.B. mehr als 51 % der Gebäude dem Sektor "Private Haushalte" zugeordnet, wird das gesamte Cluster diesem Sektor zugeordnet.

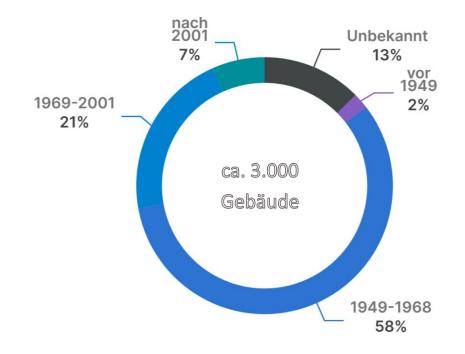


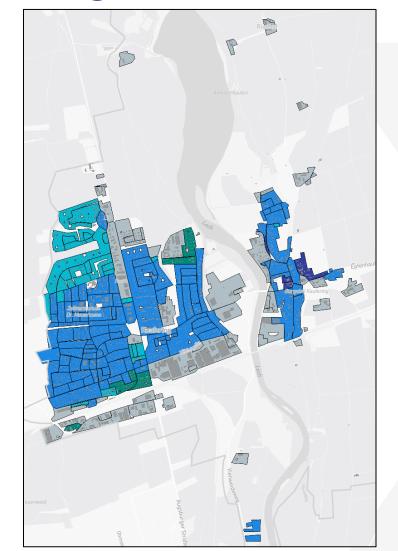


Analyse Gebäude- und Siedlungsstruktur

Nutzungsart

Gebäude nach Sektoren

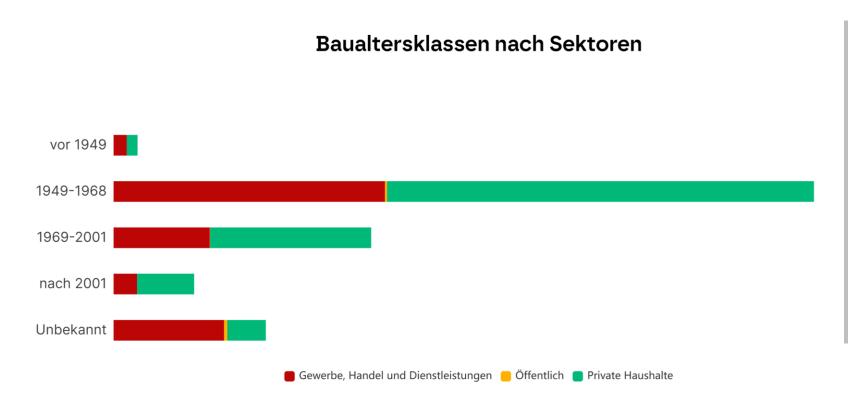




Analyse Gebäude- und Siedlungsstruktur

Baualtersklassen

Gebäude nach Baualtersklassen



Analyse Gebäude- und Siedlungsstruktur

Übersicht

- Erheblicher Anteil der Gebäude wurde vor 1977 errichtet und somit in vielen Fällen vor der ersten Wärmeschutzverordnung.
- Die "Verordnung über energiesparenden Wärmeschutz bei Gebäuden" wurde 1977 als erste Verordnung auf der Grundlage des Energieeinsparungsgesetzes erlassen. Bis zu dahin gab es in Deutschland keine öffentlich-rechtlichen Vorschriften für den energiesparenden Wärmeschutz von Gebäuden*

Quelle: Bundesinstitut für Bau-, Stadt- und Raumforschung

Analyse Energieinfrastruktur

Erdgasnetz

- Netzbetreiber: Schwaben Netz GmbH
- Transformation auf 100 % Wasserstoff bis 2035 geplant Kosten für grünen Wasserstoff weiterhin unklar

Wärmenetz

- Netzbetreiber: Kommunalwerke Kaufering
- Rund 360 angeschlossene Abnehmer bei einer Trassenlänge von etwa 15 km

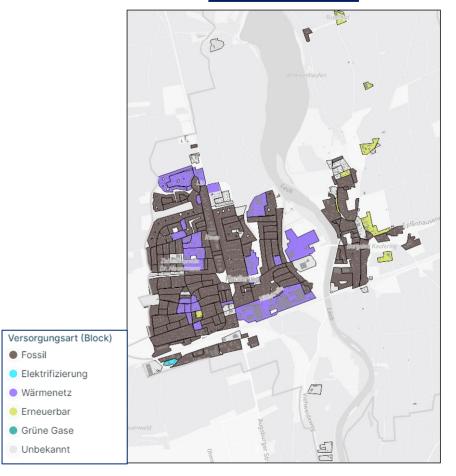
Stromnetz

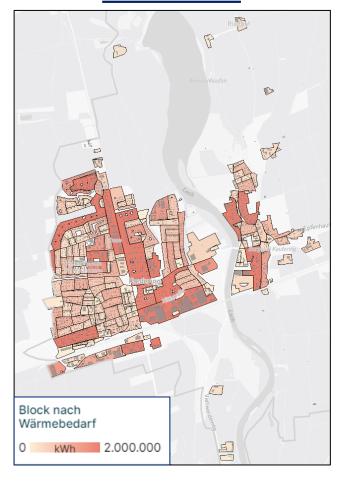
- Nieder-, Mittel-, Hochspannung: LEW Verteilnetz GmbH; Höchstspannung: TenneT
- Netzentwicklungsplan: 380 kV Erhöhung Übertragungskapazität; 110 kV Erhöhung Umspannkapazität

Energieinfrastruktur

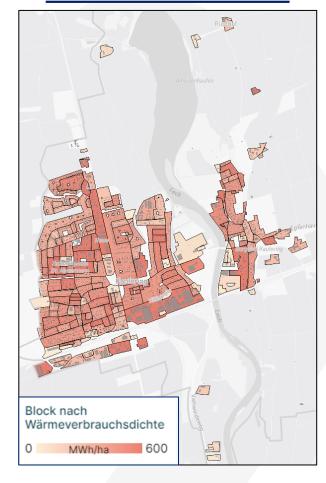
- Betrachtung aller im Marktstammdatenregister (MaSTR) gelisteten Erzeugungstechnologien berücksichtigt
- MaSTR erfasst nur stromerzeugende Anlagen

Energieträgerverteilung

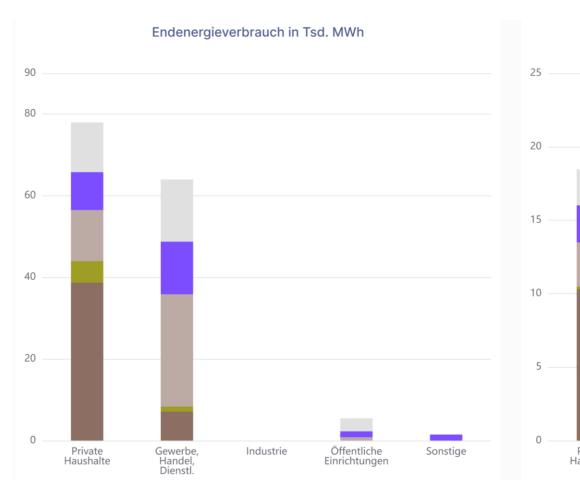

- > Die Energieträgerverteilung und Energieinfrastruktur zeigt sowohl, welche Energieträger im Gemeindegebiet in welchem Maß zur Wärmeerzeugung verwendet werden, als auch wo sich welche Infrastrukturen befinden.
- > Die Analyse zeigt erste Ansatzpunkte auf, wo Dekarbonisierungspotenzial bestehen.
- > Auch können erste Abschätzungen getroffen werden, wo eine zentrale Versorgungslösung denkbar wäre.
- Die Daten für leitungsgebundene Energieträger (Gas und Wärmenetze) entstammen aus tatsächlichen Verbräuchen
- Die Daten für nicht-leitungsgebundene Energieträger (Heizöl, Kohle, Biomasse und Flüssiggas) wurden aus Verbräuchen errechnet, die auf den Kehrdaten der Schornsteinfeger basieren.

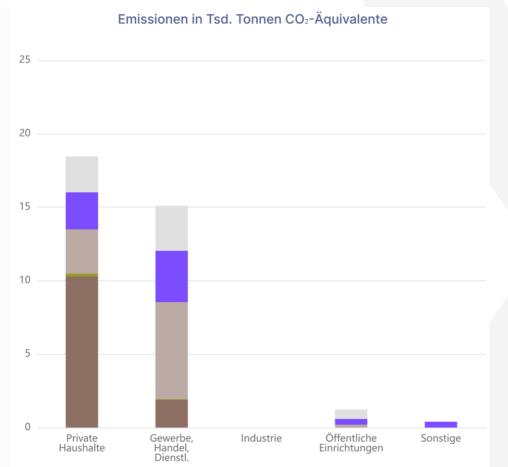


Energiebilanz


Versorgungsart

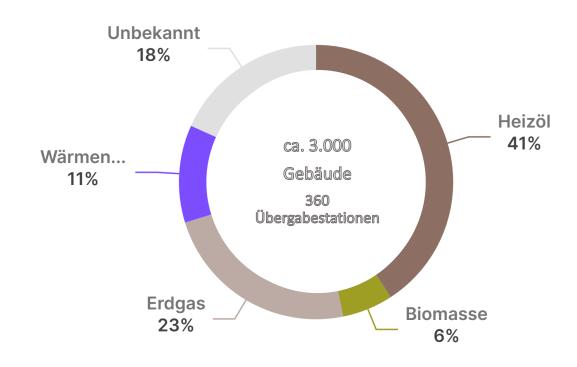
Wärmebedarf


Wärmeverbrauchsdichte



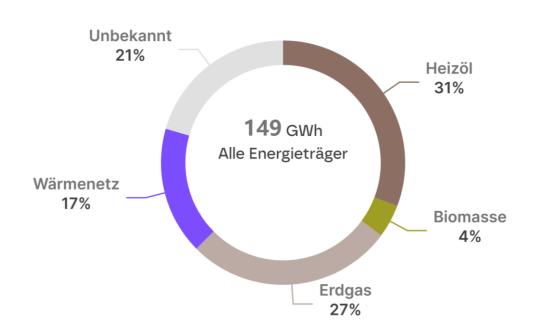
Endenergieverbrauch / THG-Emissionen – Gesamtbilanz

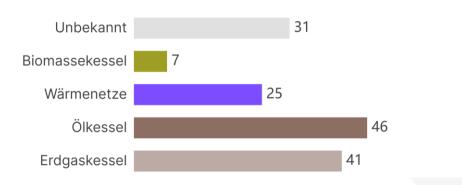
18


Quellen: INFRA-Wärme

Gebäude nach Energieträger bzw. Wärmeerzeuger

Gebäude nach Energieträger





Endenergieverbrauch nach Energieträger bzw. Wärmeerzeuger

Endenergieverbrauch nach Energieträger

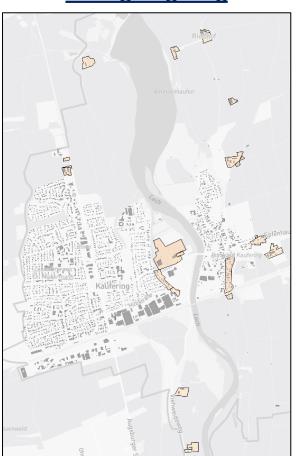
Endenergieverbrauch nach Wärmeerzeuger in GWh

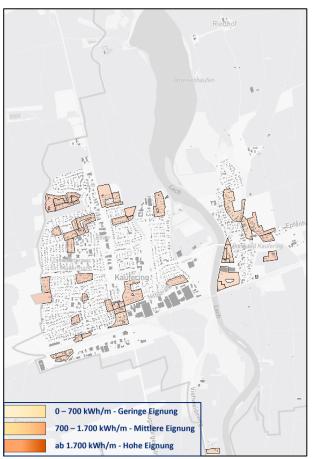
Vorprüfung Wärmeliniendichte

Wärmeliniendichte

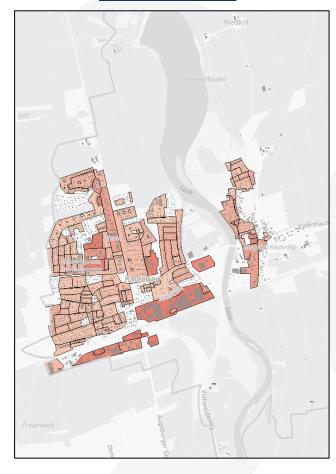
- Die Darstellung der Wärmebedarfe basiert auf dem theoretischen Wärmebedarf aus dem Raumwärmebedarfsmodell
- > Die Wärmeliniendichte gibt den Wärmebedarf in Relation zur Länge der Leitungen eines (potenziellen) Wärmenetzes an. Sie wird berechnet, indem der Wärmebedarf eines Gebietes durch die Länge der (potenziellen) Wärmetransportleitungen geteilt wird.
- Die Wärmeliniendichte ist entscheidend für die Wirtschaftlichkeit und Effizienz eines Wärmenetzes, da sie beschreibt, wie viel Energie pro Meter Leitung transportiert und benötigt wird.
- > Im Rahmen der Leitlinien zur Erstellung der Kommunalen Wärmeplanung wurden Grenzwerte definiert, ab denen eine zentrale Wärmeversorgung möglicherweise

Unterschied zur Wärmeverbrauchsdichte:


Die Wärmeverbrauchsdichte hilft, den Wärmebedarf pro Flächeneinheit zu verstehen, was besonders für die Planung von Energieversorgung und Effizienzmaßnahmen wichtig ist. Die Wärmeliniendichte zeigt, wie effizient die Wärmeverteilung auf einer bestimmten Leitungslänge ist und ist ein Schlüsselindikator für die **etwaige** Rentabilität eines Fernwärmenetzes.



Wärmeliniendichte / Eignungsprüfung


Geringe Eignung

Mittlere Eignung

Hohe Eignung

Vorprüfung auf Basis der Verbrauchswerte!

Keine Aussage zur Umsetzungswahrscheinlichkeit!

Potenzialanalyse

- > Ein weiterer grundlegender Baustein der Kommunalen Wärmeplanung ist eine umfassende und ganzheitliche Potenzialanalyse im Gemeindegebiet
- > Ziel ist es, realisierbare und wirtschaftlich sinnvolle Möglichkeiten zu identifizieren, um die derzeitige energetische Situation klimafreundlicher auszurichten
- > Inhaltlich stehen insbesondere Verbesserungen der (technischen) Gebäudestruktur sowie verschiedene Wärmequellen aus der Umwelt im Fokus
- Ein weiterer wichtiger Aspekt sind (bestehende) Wärmenetze, um Möglichkeiten für einen klimafreundlichen Betrieb oder einen Ausbau der Netze zu identifizieren
- Auch der Ausbau der regenerativen Stromerzeugung durch Photovoltaik und Windanlagen spielt bei der Elektrifizierung des Wärmesektors eine wichtige Rolle
- > Darüber hinaus können weitere Daten aus öffentlichen Quellen oder von weiteren Akteuren miteinbezogen werden, um die Qualität zu verbessern

Inhalte Potenzialanalyse

DARSTELLUNG DER ERGEBNISSE DER POTENTIALANALYSE NACH § 15 & ANLAGE 2 (ZU § 23) WPG

- > Potenzial zur Wärmeverbrauchsreduktion durch Sanierung
- > Potenzial zur regenerativen Wärmeerzeugung durch
 - > Umweltwärme
 - > Geothermie
 - > Abwasser und Gewässer
 - > Solarthermie Dachanlagen
 - > Photovoltaik Dach und Freifläche
- Potenzial zur regenerativen Stromerzeugung durch
 - > Photovoltaik Dachanlagen
 - > Photovoltaik Freiflächenanlagen
 - > Windkraft

Sanierungspotenzial

Energieeinsparung

Sanierungspotenzial bestimmt sich durch die jährliche Sanierungsrate und die Sanierungstiefe der Gebäudeklassen (Gebäude mit hohem Wärmeverbrauch pro Nutzfläche werden priorisiert saniert)

- Bundesdurchschnitt Sanierungsquote: ca. 0,7 %/a

(Quelle: BuVEG 10/2024)

- Sanierungsquote im Klimaschutzszenario: 0,7 %/a

(bis 2040: ca. 280 Gebäude)

Gemeindegebietsstatistik vgl. Bestandsszenario/Klimaschutzszenario		
	2025	2040
Wärmebedarf pro Nutzfläche	112 kWh/m ²	84 kWh/m²
Wärmebedarf pro Wohnfläche	275 kWh/m ²	206 kWh/m ²
Wärmebedarf pro Einwohner Incl. Gewerbe-/Industrieverbrauch	21,1 MWh/EW	15,8 MWh/EW
Wärmeverbrauchsdichte	84 MWh/ha	63 MWh/ha
Wärmeliniendichte	2.031 kWh/m	1.521 kWh/m

Baualters- klasse	EFH [kWh/m²]	MFH [kWh/m²]	Öffentlich [kWh/m²]	Industrie [kWh/m²]	Sonstige [kWh/m²]
Unbekannt	59	57	87	35	60
Vor 1949	65	61	112	47	71
1949 - 1968	65	64	112	47	72
1969 - 2001	56	54	74	30	54
Nach 2001	50	48	48	18	41

Wärmeenergieeinsparung durch Bestandssanierung	- 37,4 GWh/a	-25,1 %
Wärmeenergiebedarf Bestandsszenario 2024	148,9 GWh/a	

Wärmeenergiebedarf Klimaschutzszenario 2040

111,5 GWh/a

Geothermisches Potenzial

Tiefe Geothermie

- > Betrachtung hydrothermaler und petrothermaler Ressourcen
- > Gemeinde liegt im Gebiet des Süddeutschen Molassebeckens
- Vorstudie (Erdwerk GmbH): Potenzial ab ca. 2.000 m Bohrtiefe; weitere Machbarkeitsprüfung bei Umsetzungsinteresse empfohlen

Oberflächennahe Geothermie

- Im Gemeindegebiet sind Bestandsanlagen wie Erdwärmesonden sowie Förder- und Schluckbrunnen vorhanden
- Erdwärmesonden (EWS): Entzugsleistung pro Sonde relativ hoch
- Grundwasserwärmepumpen (GWWP): Entzugsleistung im Gebiet vergleichsweise gering
- Horizontale Erdwärmekollektoren (EWK): Entzugsleistung im Gebiet vergleichsweise gering
- > Grabenkollektoren (GK): Entzugsleistung vergleichsweise hoch
- Das tatsächliche Nutzungspotenzial ist standortabhängig und muss individuell geprüft werden

Unvermeidbare Abwärmepotenziale

Wärmeerzeugung

Die unvermeidbaren Abwärmepotenziale von Hilti werden laut Aussage vom Betreiber teilweise intern verwendet. Eine zukünftige externe Nutzung sollte geprüft werden.

Abwasserwärme

Wärmeerzeugung

- Nutzung der Restwärme im Abwasser durch Wärmetauscher in Kombination mit einer Wärmepumpe beispielsweise zur Einspeisung in ein Wärmenetz oder zur Quartiersversorgung
- > Durchfluss = 25 l/s Spreizung = 1 K Theoretische max. Wärmetauscherleistung = 100 kW

Abwasserentsorgung in Kaufering

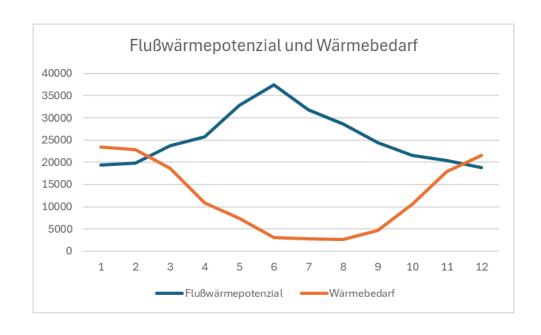
Daten zum Kanalsystem -> Kommunalwerk

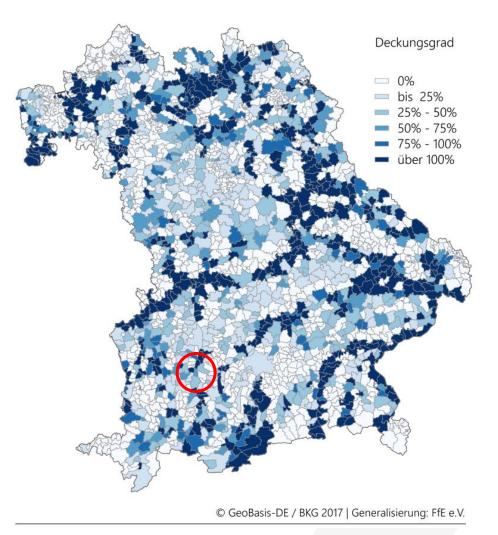
Eine Nutzung der Abwasserwärme in Kaufering wäre durch einen Wärmetauscher in/an der Kanalleitung möglich.

Die anstehende Kanalsanierung könnte daher eine günstige Möglichkeit zur Einbringung darstellen.

Eine Einzelfalluntersuchung (für Temperatur/Trockenwetterabfluss) ist daher notwendig.

Potenzialschätzung Abwasserwärme Gesamtort		
Einwohnerzahl (Zensus 2022)	10.376 EW	
Abwassermenge pro EW (Durchschnitt)	99,43 l/d	
Abwärmepotenzial pro m³ Abwasser	6,42 kWh/m ³	
Jährliche Abwassermenge (laut Angaben)	ca. 500.000 m³/a	
Jahresdurchschnittstemperatur (Schätzung)	ca. 15 °C	
Maximale Spreizung (Annahme)	1 Kelvin	
Theoretisches Wärmepotenzial des jährlichen Abwasservolumens (Hochgerechnet)	ca. 3.210 MWh/a	



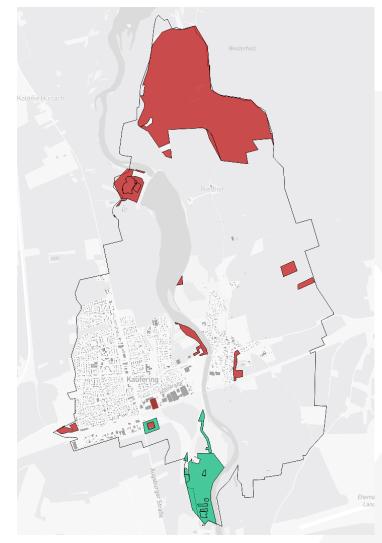


Flußwärme

Wärmeerzeugung

Eine Nutzung des Lechs zum Wärmeentzug mittels Wärmepumpe wäre denkbar und laut einer Studie des FfE mit Deckungsraten von 75-100% des Gesamtwärmebedarfs.

Deckungsgrad je Gemeinde bei 2K im Januar



Biomassepotenzial

Wärmeerzeugung

Grundlage: Gesamter Holzeinschlag bei Basisbewirtschaftung

Gemeindegebietsstatistik Biomasse Potenzial		
Holzeinschlag (laut Forsteinrichtungsergebnis)	4,16 m³/ha	
Energieholzanteil (Durchschnitt)	21,9 %	
Energieholzanteil (Hochgerechnet)	0,9 m³/ha	
Heizwert (Hochgerechnet)	2.124 kWh/m ³	
Spezifischer Biomasseertrag (Hochgerechnet)	1.911 kWh/ha	
Biomassepotenzial (bei 96 ha Gesamtfläche)	183 MWh/a	

Baumart verfügbar

Baumart nicht verfügbar

Daten ergänzt durch genaue Forsteinrichtungsergebnisse 2021

Photovoltaik – Dachflächen INFRA-Wärme

Max. theoretischer Wert Stromerzeugung

Gemeindegebietsstatistik PV-Dach Potenzial		
Globalstrahlung	1.198 kWh/m ²	
Nutzbare Dachfläche Gesamt	505.827 m ²	
Volllaststunden	978 h/a	
Anlagenleistung Gesamtfläche	75,8 MWp	
Anlagenleistung Bestandsanlagen	10,9 MWp	
Anlagenleistung freies Potenzial	<u>64,9 MWp</u>	
Potenz. Stromerzeugung Gesamtfläche hochgerechnet	74,1 GWh/a	
Stromerzeugung Bestandsanlagen	10,7 GWh/a	
Stromerzeugung freies Potenzial	63,4 GWh/a	

Solarthermie – Dachflächen INFRA-Wärme

Max. theoretischer Wert Wärmeerzeugung

Gemeindegebietsstatistik Solarthermie Potenzial		
Kollektorfläche Gesamtfläche	126.457 m ²	
Volllaststunden	978 h/a	
Wärmeleistung Gesamtfläche	63,2 MWp	
Wärmeerzeugung Gesamtfläche	61,9 GWh/a	

Da durch das Marktstammdatenregister nur Anlagen zur Stromerzeugung erfasst werden, liegen keine Daten zu vorhandenen Solarthermieanlagen vor.

Photovoltaik - Freiflächen

Restriktionskarten der Ausschlussflächen bzw. mögliche PV-Flächen liegen dem Gremium vor.

Windenergie

Wegen Lechfeld gibt es keine Möglichkeiten zur Erstellung von Windenergieanlagen.

Zielszenario

DARSTELLUNG DES ZIELSZENARIOS NACH § 17 WPG

- > In den Szenarien wird angenommen, dass im Jahr 2040 kein fossiler Brennstoff mehr eingesetzt wird
 - Weg aufgezeigt zukünftigen Wärmebedarf klimaneutral mit erneuerbaren Energien bereitzustellen
- > Potentiale nach § 17 WPG für klimaneutrale Wärmeversorgung inkl. konkrete Zukunftsszenarien
 - > Jährlicher Endenergieverbrauch der gesamten Wärmeversorgung
 - > Jährliche Treibhausgasemissionen der gesamten Wärmeversorgung
 - > Jährlicher Endenergieverbrauch der leitungsgebundenen Wärmeversorgung
 - > Anteil der leitungsgebundenen Wärmeversorgung am gesamten Endenergieverbrauch
 - > Anzahl der Gebäude mit Anschluss an ein Wärmenetz
 - > Jährlicher Endenergieverbrauch aus Gasnetzen nach Energieträgern
 - > Anzahl der Gebäude mit Anschluss an ein Gasnetz
- > Aufstellung der Maßnahmen und Anpassungen
- Abbildung der möglichen Versorgungsstruktur Gebietsgröße (evtl. Teilgebiete, Sektoren, usw.), Netzlänge, Wärmebedarf, Ziele der Kommunalentwicklung (z.B. Wärmeversorgung, ...) inkl. der möglichen Maßnahmen wie Kosten und Zuständigkeiten

Zielszenario, Eignungsgebiete & Umsetzungsstrategie

Entwurf der Offenlegung

- Diese Präsentation zeigt den vorläufigen Stand, der Einteilung der Wärmeversorgungsgebiete,
 Fokusgebiete um Umsetzungsstrategie im Rahmen der Kommunalen Wärmeplanung
- Sie dient dazu, Ihnen einen ersten Einblick zu geben, welche Ergebnisse bisher erarbeitet wurden
- > Im Rahmen der Offenlegung erhoffen wir uns Stellungnahmen Ihrerseits, um die vorliegenden Daten weiter zu konkretisieren, bzw. anzupassen, falls notwendig
- Die eingegangenen Stellungnahmen werden von der Kommune und den beauftragten Büro MaxSolar GmbH geprüft und, soweit möglich, in den Wärmeplan integriert

Die Offenlegung findet bis zum 13.12.2025 statt. Stellungnahmen reichen Sie bitte gemäß dem beschriebenen Vorgehen per QR / Link in den Feedback-Bogen ein.

(→ Homepage: Markt Kaufering)

Einteilung in Wärmeversorgungsgebiete

INHALTE NACH § 18 WPG

Im Wärmeplan wird die nach § 18 vorgenommene Einteilung der Grundstücke und Baublöcke in verschiedene Kategorien voraussichtlicher Wärmeversorgungsgebiete für die in § 18 Absatz 3 genannten Betrachtungszeitpunkte, das heißt die Jahre 2030, 2035 und 2040, jeweils kartografisch und textlich dargestellt. Die Begriffsbestimmung der Eignungsgebiete erfolgt gemäß § 3 WPG.

> Wärmenetzgebiet

Die zukünftige Wärmeversorgung soll überwiegend über ein/mehrere zentrale Wärmenetze erfolgen. Es wird zwischen Wärmenetzneubau-, Wärmenetzausbau- und Wärmenetzverdichtungsgebieten unterschieden.

> Gebiet für dezentrale Wärmeversorgung

Ein Gebiet, das überwiegend nicht über ein Wärme- oder Gasnetz versorgt werden soll, wird als "Gebiet für die dezentrale Wärmeversorgung" ausgewiesen. Jedes Haus soll individuell mit regenerativer Energie (u.a. Wärmepumpen, Biomassekessel) versorgt werden.

> Wasserstoffnetzgebiet

Ein Gebiet, ein Wasserstoffnetz besteht oder geplant ist und ein erheblicher Anteil der ansässigen Letztverbraucher über das Wasserstoffnetz zum Zweck der Wärmeversorgung gedeckt wird. Zudem wurde die Nutzung von Wasserstoff als Energieträger für die Wärmeversorgung geprüft und als geeignet befunden.

> Prüfgebiet

Ein Gebiet, das keinem anderen Wärmeversorgungsgebiet mehrheitlich zugeschrieben werden kann (bspw. wenn dezentrale und zentrale Versorgung als gleich wahrscheinlich bewertet werden können), oder durch eine andere Art (bspw. mit Biomethan) versorgt werden soll.

Datengrundlage: Vollkostenvergleich für 2040

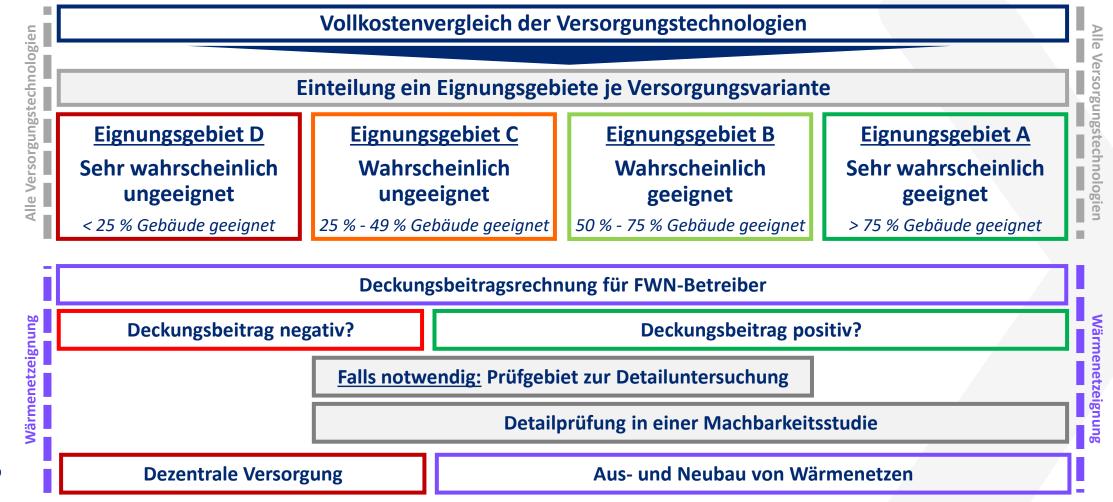
Beispiel Einfamilienhaus

Kostensatz [netto]				
Wärmenetzanschluss				
Grundpreis (Preisblatt 2/2025,Fernwärme Kaufering)	149,35 €/a			
Arbeitspreis (Preisblatt 2/2025,Fernwärme Kaufering)	10,8 Cent/kWh _{th}			
Leistungspreis (Preisblatt 2/2025,Fernwärme Kaufering)	18,01 €/kW			
Messpreis (Preisblatt 2/2025, Fernwärme Kaufering)	82,02 €/a			
Investitionskosten (inkl. einmalige Umbaumaßnahmen)	ca. 33.000 €			
Wärmepumpe (Heizstromtarif LEW)				
Jahresarbeitszahl (realistisch)	3,0 kWh _{th} /kWh _{el}			
Investitionskosten (inkl. einmalige Umbaumaßnahmen)	ca. 37.500 €			
Lebensdauer	18 Jahre			

<u>Transformation des Erdgasnetzes zu Wasserstoff:</u>
--

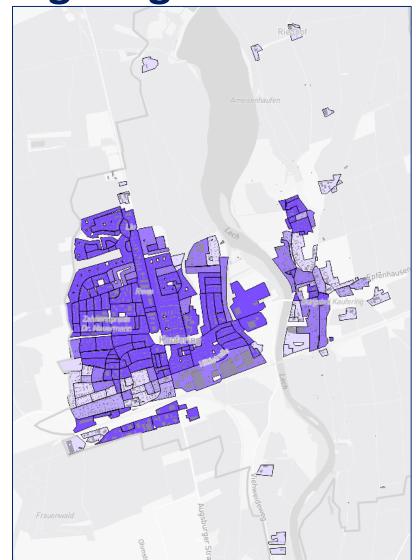
Preisannahme Wasserstoff = Erdgas

Beispielrechnung	
Gebäude	Einfamilienhaus
Wohnfläche	187 m ²
Baualtersklasse des Gebäudes	1958 - 1968
Wärmebedarf	34,9 MWh/a
Wärmeleistung	17 kW
Energieeffizienzklasse (nach GEG)	F


_		
Vollkostenvergleich im Zieljahr 2040	[netto]	
Erdgaskessel Quellen: KWW, INFRA Wärme, MaxSolar	8.198 €/a	Keine Perspektiv
Synth. Energieträgerkessel (H2) Quellen: KWW, INFRA Wärme, MaxSolar	/ × / 11 + / 2	Verfügbarke /Kosten off
Biomassekessel Quellen: KWW, INFRA Wärme, MaxSolar	8.810 €/a	Überall verfügbar
Wärmepumpe Quellen: KWW, INFRA Wärme, MaxSolar	8.822 €/a	Überall verfügbar
Wärmenetzanschluss Quellen: MaxSolar	7.856 €/a	Nicht Übera verfügbar

Einteilung in Eignungsgebiete

Versorgungsbeurteilung



X

Zielszenario – Eignung Wärmenetz

Gesamtansicht

Unbestimmt

Eignungsgebiet D:

Sehr wahrscheinlich ungeeignet

Eignungsgebiet C:

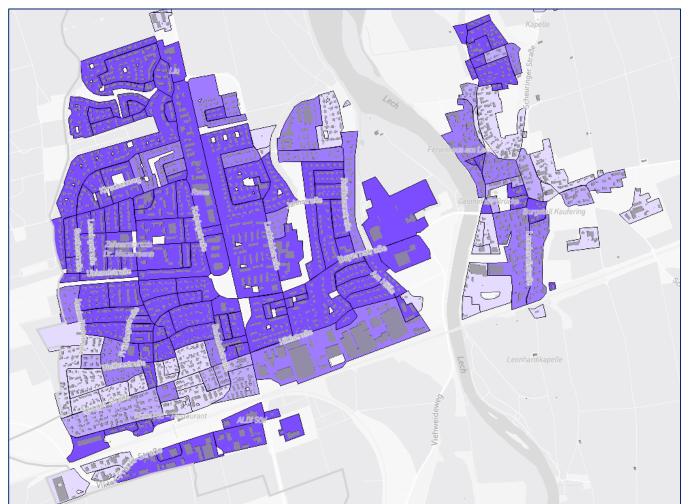
Wahrscheinlich ungeeignet

Eignungsgebiet B:

Wahrscheinlich geeignet

Eignungsgebiet A:

Sehr wahrscheinlich geeignet


Alle Gebiete außerhalb der Abbildung, können mit **Eignungsstufe D** bewertet werden

Zielszenario – Eignung Wärmenetz

Stadtgebiet

Unbestimmt

Eignungsgebiet D:

Sehr wahrscheinlich ungeeignet

Eignungsgebiet C:

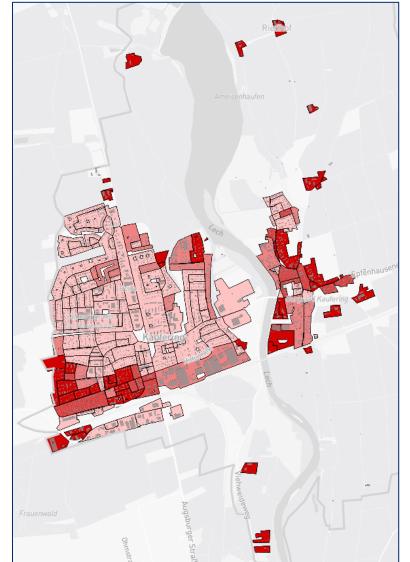
Wahrscheinlich ungeeignet

Eignungsgebiet B:

Wahrscheinlich geeignet

Eignungsgebiet A:

Sehr wahrscheinlich geeignet


Alle Gebiete außerhalb der Abbildung, können mit **Eignungsstufe D** bewertet werden

Zielszenario – Eignung Dezentrale Versorgung

Gesamtansicht

Unbestimmt

Eignungsgebiet D:

Sehr wahrscheinlich ungeeignet

Eignungsgebiet C:

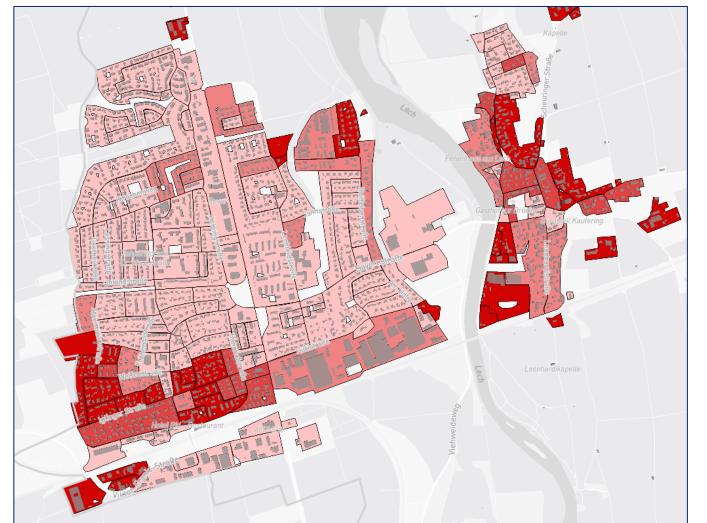
Wahrscheinlich ungeeignet

Eignungsgebiet B:

Wahrscheinlich geeignet

Eignungsgebiet A:

Sehr wahrscheinlich geeignet


Alle Gebiete außerhalb der Abbildung, können mit **Eignungsstufe A** bewertet werden

Zielszenario – Eignung Dezentrale Versorgung

Stadtgebiet

Unbestimmt

Eignungsgebiet D:

Sehr wahrscheinlich ungeeignet

Eignungsgebiet C:

Wahrscheinlich ungeeignet

Eignungsgebiet B:

Wahrscheinlich geeignet

Eignungsgebiet A:

Sehr wahrscheinlich geeignet

Alle Gebiete außerhalb der Abbildung, können mit **Eignungsstufe A** bewertet werden

Zielszenario – Voraussichtliche Wärmeversorgung

Achtung:

- Die Einteilung in 5
 Jahresabschnitte stellt
 <u>nicht</u> den optimalen
 Zeitpunkt der Umrüstung
 auf die Zieltechnologie
 dar!
- Richtig: Die Einteilung zeigt, zu welchem statistischen Zeitpunkt, min. 49 % der Gebäude bereits die Zieltechnologie erreicht haben sollten!
- Ziel: Die jeweilige
 Zieltechnologie sollte zum nächstmöglichen
 Zeitpunkt angestrebt werden.

Prüfgebiet

Wärmenetzgebiet

Bestandsgebiet

Ab 2025: > 49 % Ziel erreicht

Ab 2030: > 49 % Ziel erreicht

Ab 2035: > 49 % Ziel erreicht

Ab 2040: > 49 % Ziel erreicht

Dezentrale Versorgung

Bestandsgebiet

Ab 2025: > 49 % Ziel erreicht

Ab 2030: > 49 % Ziel erreicht

Ab 2035: > 49 % Ziel erreicht

Ab 2040: > 49 % Ziel erreicht

Synthetische Brennstoffe

Bestandsgebiet

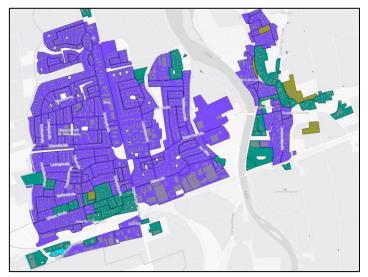
Ab 2025: > 49 % Ziel erreicht

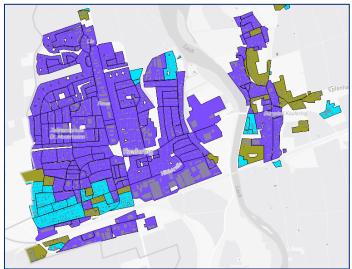
Ab 2030: > 49 % Ziel erreicht

Ab 2035: > 49 % Ziel erreicht

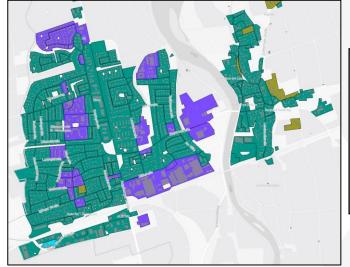
Ab 2040: > 49 % Ziel erreicht

Zielszenario – Aufteilung nach Heiztechnologie




Zielszenario – Auswirkung versch. Parameter

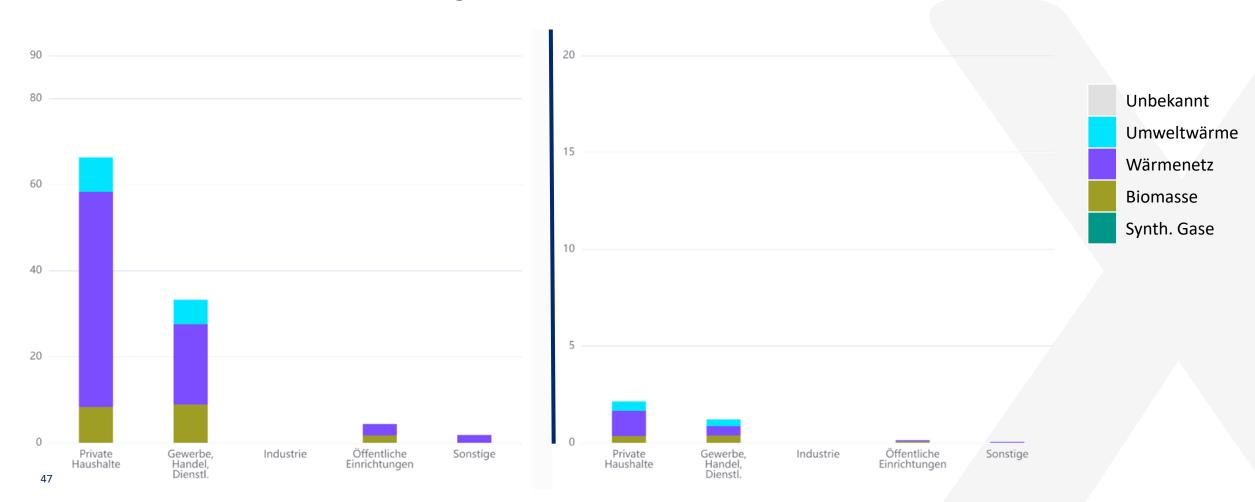
> Wärmepreis um 1 ct/kWh günstiger (= 9,8 ct/kWh (netto)


- > Fernwärme dominant
- > Etwas synth. Energieträger (H2)

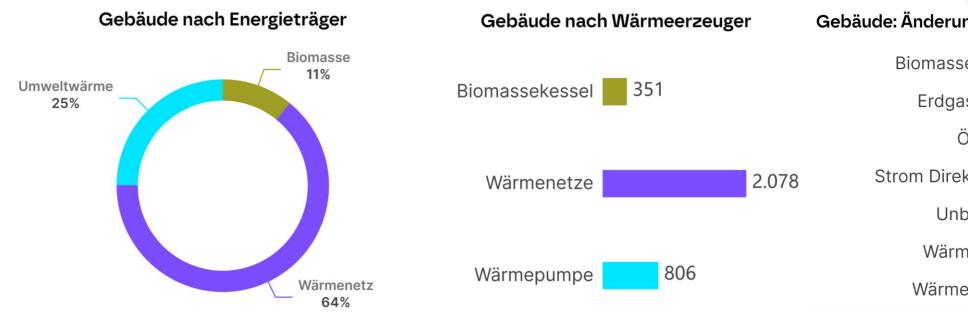
Wärmepreis ab 2026 (10,8 ct/kWh)
 Synth. Energieträger nicht vorhanden oder zu teuer

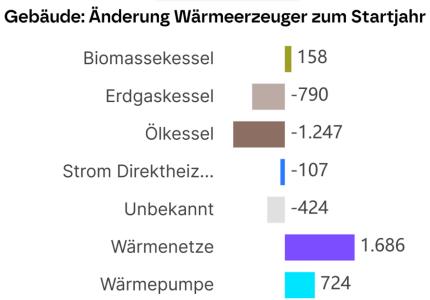
- > Fernwärme dominant
- > Mehr Biomasse und Wärmepumpen

Wärmepreis ab 2026 (10,8 ct/kWh)
Wasserstoffpreis = Erdgaspreis

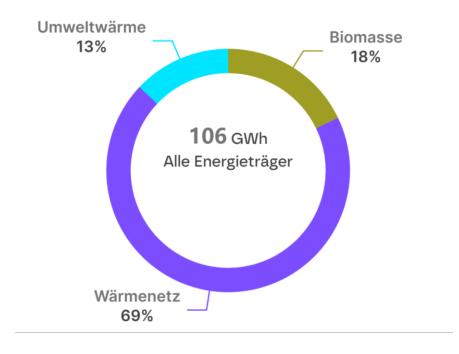

- Synth. Energieträger und Wärmenetz liegen knapp beieinander
- > Wenig Biomasse und Wärmepumpen

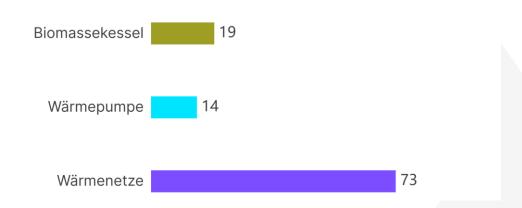
- WärmenetzeWärmepumpe
- Synthetische Energieträger Heizkessel
 - Biomassekessel


Gesamtübersicht – Endenergieverbrauch und Emissionen



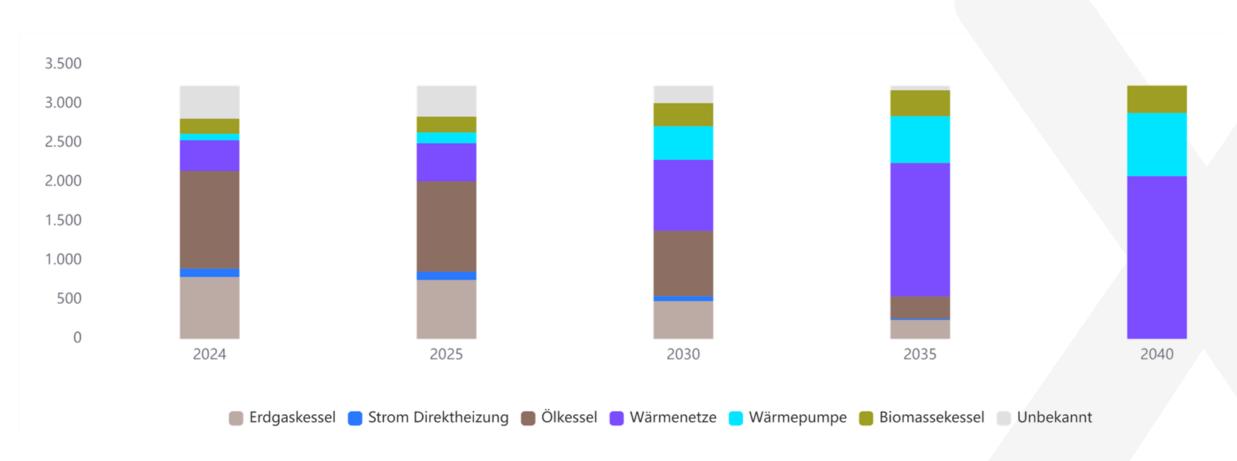
Gesamtübersicht – Gebäude nach Energieträger bzw. Wärmeerzeuger

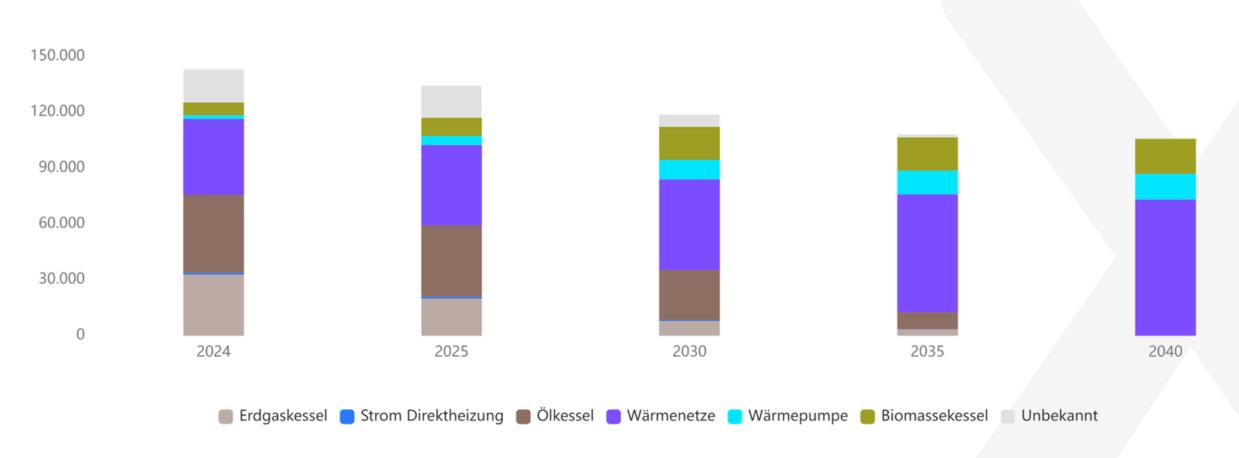


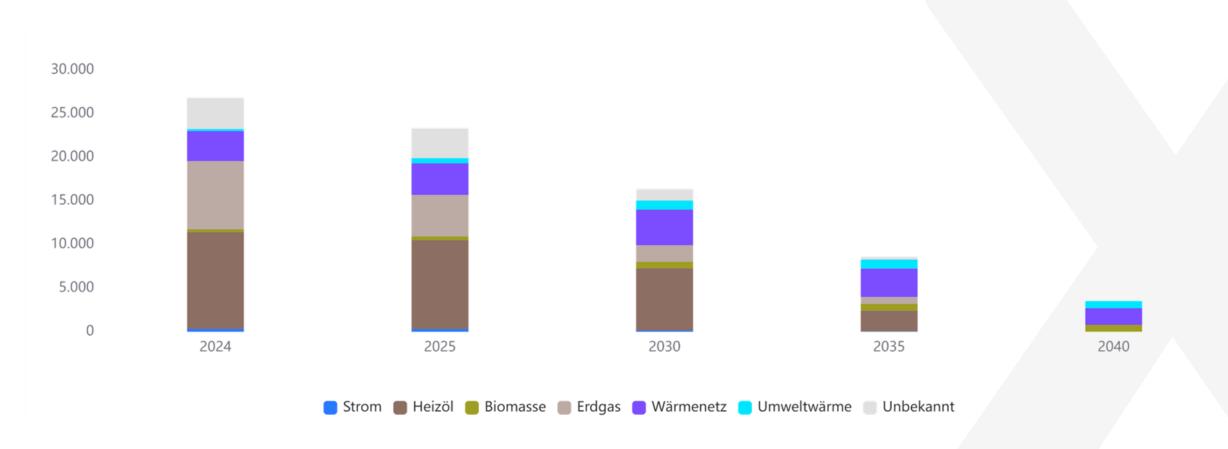


Gesamtübersicht – Endenergieverbrauch nach Energieträger bzw. Wärmeerzeuger

Endenergieverbrauch nach Energieträger


Endenergieverbrauch nach Wärmeerzeuger in GWh


Zeitliche Auswertung – Gebäude nach Heiztechnologie

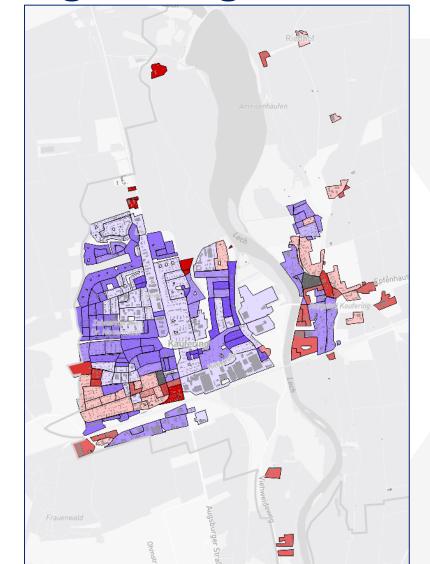

Zeitliche Auswertung – Endenergie nach Heiztechnologie [MWh]

Zeitliche Auswertung – Emissionen nach Heiztechnologie [t_{CO2}]

Umsetzungsstrategie & Maßnahmen

NACH § 20 WPG 1

- > Schritte, die für die Umsetzung einer Maßnahme erforderlich sind
- > Zeitpunkt, zu dem die Umsetzung der Maßnahme abgeschlossen sein soll
- > Kosten, die mit der Planung und Umsetzung der Maßnahme verbunden sind
- > Akteur, der die Kosten übernimmt
- > Positive Auswirkungen der Maßnahmen auf die Erreichung des Zielszenarios
 - Die Wärmewendestrategie bildet das Herzstück der kommunalen Wärmeplanung
 - > Sie skizziert einen Transformationspfad, der von einem im Rahmen der Bestandsaufnahme ermittelten Ist -Zustand sowie der Potenzialanalyse ausgeht und auf eine klimaneutrale Wärmeversorgung abzielt
 - > Welche entscheidenden Schritte müssen zeitnah unternommen werden, um das vorgegebene Ziel innerhalb des geplanten Zeitraums zu erreichen?
 - Das erarbeitete Szenario wird nachvollziehbar und transparent in konkrete Handlungsempfehlungen sowie eine Abfolge von Maßnahmen mit groben Zeitplänen umgewandelt
 - > Örtliche Herausforderungen und Hindernisse werden analysiert und es werden Lösungsansätze skizziert, um diese zu überwinden

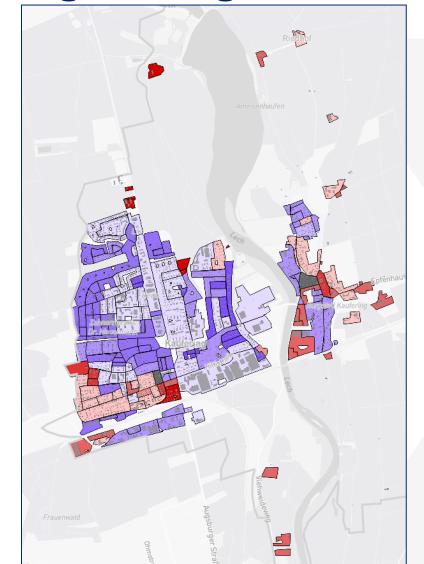


Maßnahmen zur Fernwärme

<u>Nr.</u>	#01	Maßnahme		
Bezeichn	iung:	Machbarkeitsstudie nach BEW-Modul		W-Modul 1
Maßnah	mentyp:	Strategisch	Priorität:	Hoch
Bereich:		Wärmenetz	Dauer:	6 – 12 Monate

Bereits in Arbeit

<u>Nr.</u>	#02	Maßnahme		
Bezeichr	iung:	Interessensabfrage Fernwärmeanschluss		
Maßnah	mentyp:	Strategisch	Priorität:	Hoch
Bereich:		Wärmenetz	Dauer:	1 – 3 Monate



Maßnahmen zu dezentraler Versorgung

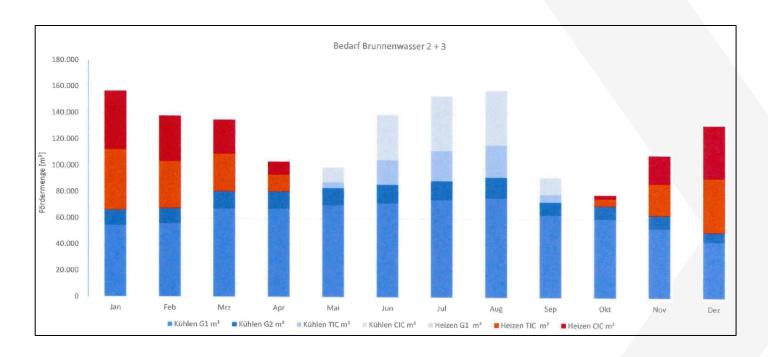
<u>Nr.</u>	#20	Maßnahme		
Bezeichn	ung:	Informationsveranstaltung /		
		Energieberatung zu dezentralen		
		Heiztechnologien		ien
Maßnah	mentyp:	Informativ	Priorität:	Mittel
Bereich:		Dezentrale	Dauer:	1 – 7 Tage
		Versorgung		

<u>Nr.</u>	#21	Maßnahme		
Bezeichr	nung:	Bildung von Facharbeitsgruppen zur		
		Beratung in dezentralen		itralen
		Versorgungsgebieten		ieten
Maßnah	mentyp:	Strategisch	Priorität:	Gering
Bereich:		Dezentrale	Dauer:	-
		Versorgung		

Maßnahmen zur Abwärme (Abwasser)

Nr.	#35	Maßnahme		
Bezeichr	nung:	Machbarkeitsprüfung zur		
		technischen/wirtschaftlichen Nutzung		n Nutzung
		von Abwasserwärme		ie
Maßnah	mentyp:	Strategisch	Priorität:	Mittel
Bereich:		Potenzial-	Dauer:	1-3
		nutzung		Monate

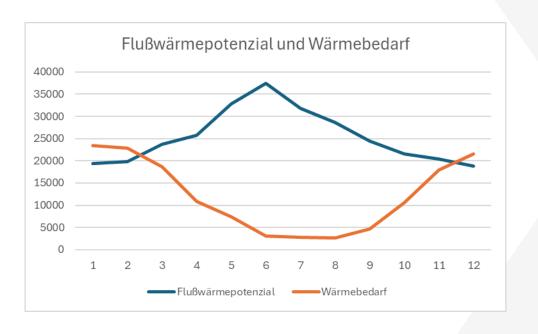
Potenzialschätzung Abwasserwärme Gesamtort				
Einwohnerzahl (Zensus 2022)	10.376 EW			
Abwassermenge pro EW (Durchschnitt)	99,43 l/d			
Abwärmepotenzial pro m³ Abwasser	6,42 kWh/m ³			
Jährliche Abwassermenge (laut Angaben)	ca. 500.000 m³/a			
Jahresdurchschnittstemperatur (Schätzung)	ca. 15 °C			
Maximale Spreizung (Annahme)	1 Kelvin			
Theoretisches Wärmepotenzial des jährlichen Abwasservolumens (Hochgerechnet)	<u>ca. 3.210 MWh/a</u>			



Maßnahmen zur Abwärme (Biomasse-Heizwerk und Hilti)

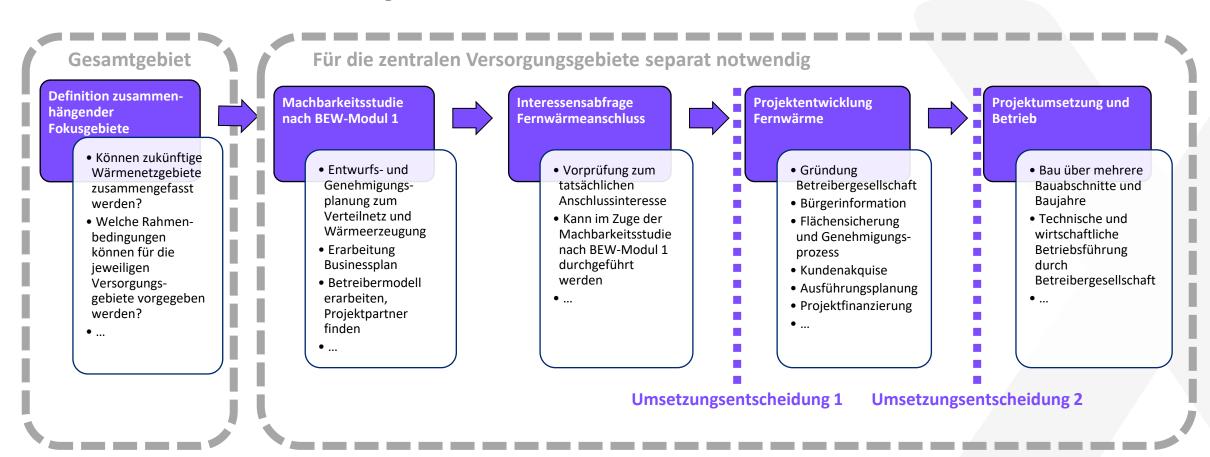
Nr.	#36	Maßnahme		
Bezeichn	ung:	Machbarkeitsprüfung zur		
		technischen/wirtschaftlichen Nutzung		
		der Abwärme vom Heizwerk		
Maßnah	Maßnahmentyp:StrategischPriorität:Mitte		Mittel	
Bereich:		Potenzial-	Dauer:	1-3
		nutzung		Monate

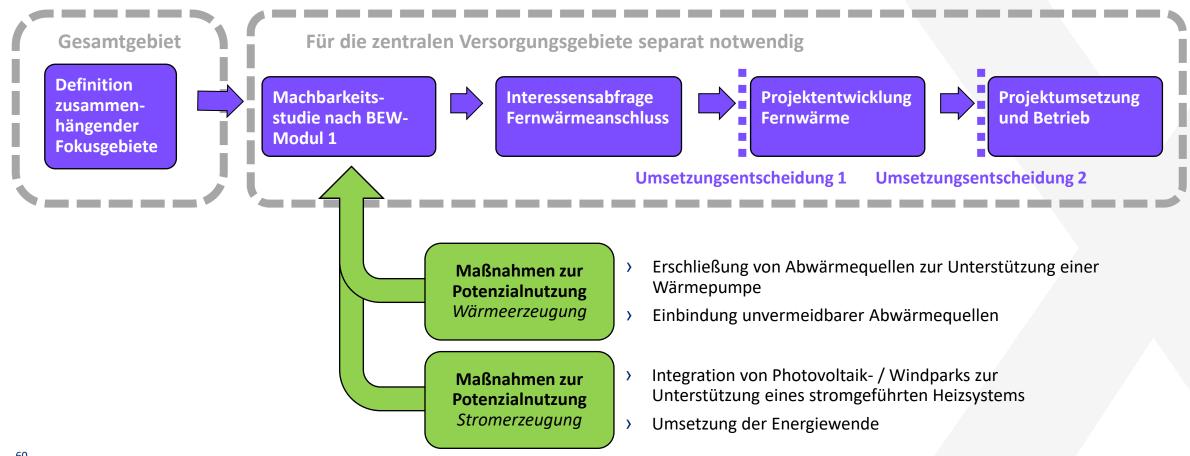
<u>Nr.</u>	#37	Maßnahme		
Bezeichn	ung:	Machbarkeitsprüfung zur		
		technischen/wirtschaftlichen Nutzung		
		der Abwärme von Hilti		ilti
Maßnah	mentyp:	Strategisch Priorität: Mittel		Mittel
Bereich:		Potenzial-	Dauer:	1-3
		nutzung		Monate

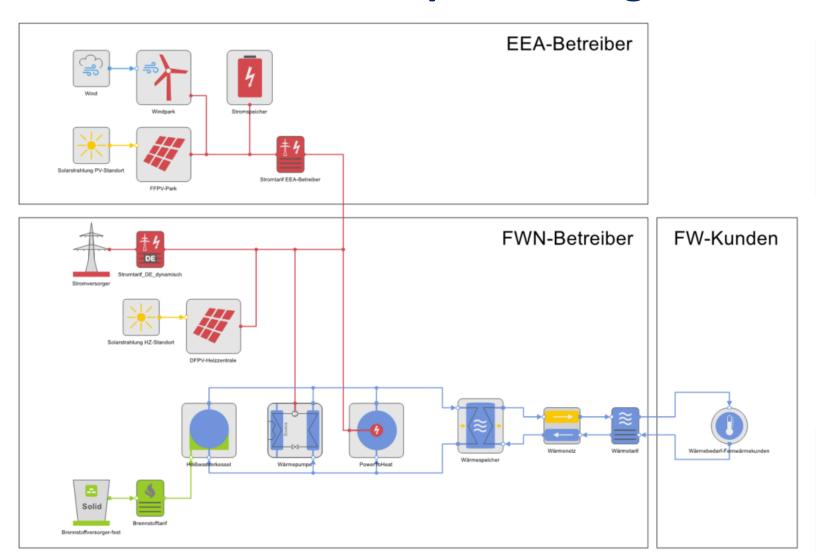


Maßnahmen zur Flußwärme

Nr.	#38	Maßnahme		
Bezeichnung:		Machbarkeitsprüfung zur		
		technischen/wirtschaftlichen Nutzung		
		von Flußwärme		
Maßnahmentyp:		Strategisch	Priorität:	Mittel
Bereich:		Potenzial-	Dauer:	1-3
		nutzung		Monate


Eine Nutzung des Lechs zum Wärmeentzug mittels Wärmepumpe wäre denkbar und laut einer Studie des FfE mit Deckungsraten von 75-100% des Gesamtwärmebedarfs.


Timeline – Wärmenetzgebiete


Timeline – Wärmenetzgebiete

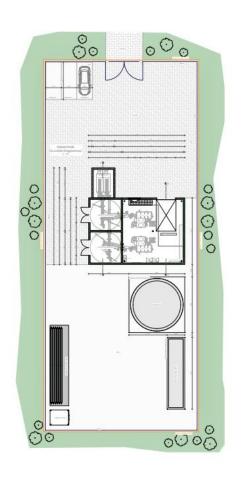
MaxSolar Standardkonzept – Erzeugerschema

Beispielanlage Energiedorf Bundorf

Leistungsdaten Wärmeerzeugung

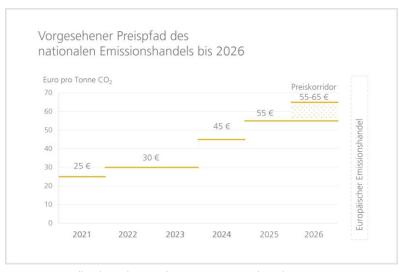
- > 2 Luft-Wärmepumpen (Grundlast nur bei PV-Ertrag)
- > Elektrokessel (power2heat bei PV-Überschuss/Redundanz)
- Hackschnitzelkessel (Spitzenlast und Alternativbetrieb)
- Pufferspeicher (Lieferfähigkeit 24 STD bei Volllast)
- Stromdirektleitung (20kV)

Gefördert durch:


aufgrund eines Beschlusses des Deutschen Bundestages

Beispiel Heizzentrale – MaxSolar Standard

Vorteile Fernwärme


- > Platzgewinn im Heizungsraum
- > Hoher Wirkungsgrad
- Fernwärmenetz-Betreiber zuständig f.
 Reparaturen, Wartung und techn. Betriebsführung
- > keine Rückstellungen f. neue Heizungsanlage
- > keine Abhängigkeit v. Öl / Gas
- > transparente Preisgestaltung
- regionale Wärmeerzeugung
- > Wertsteigerung der Immobilie
- Steigerung der Energieeffizienz -Gebäudeenergieausweis

Klimaschutz- und Energieagentur

Quelle: Verbraucherzentrale NRW

Bürgerinnen, Bürger sowie kleine und mittlere Unternehmen (KMU) nehmen nicht direkt am nationalen Emissionshandel teil - sondern diejenigen, die die Brenn- und Kraftstoffe in den Wirtschaftsverkehr bringen. Direkt betroffen vom nationalen Emissionshandel sind also lediglich Unternehmen der Mineralölwirtschaft, Großhändler von Brennstoffen oder Gaslieferanten.

Die Kosten jedoch an die Verbraucher weitergegeben – die derzeitigen Verbraucherpreise zeigen eine Steigerung zwischen sieben und acht Cent pro Liter für Diesel, Superbenzin und leichtem Heizöl sowie um ca. 0,5 Cent pro Kilowattstunde für Erdgas.

Prognose Potsdam-Institut für Klimaforschung: Mögliche Preisentwicklung CO₂ Preis 2030 120 €/t sowie 2050 400 €/t

Wir sind Komplettanbieter für Kommunen bei der Energie- und Wärmewende

Alle Bereiche aus einer Hand:

Nach Bau und Fertigstellung übernehmen wir die technische Betriebsführung für alle Bereiche.

www.maxsolar.com

Vielen Dank für Ihre Aufmerksamkeit

Alexander Steber

alexander.steber <u>@</u>maxsolar.de

www.maxsolar.com

